Functional architecture of verbal and tonal working memory: an FMRI study.
نویسندگان
چکیده
This study investigates the functional architecture of working memory (WM) for verbal and tonal information during rehearsal and articulatory suppression. Participants were presented with strings of four sung syllables with the task to remember either the pitches (tonal information) or the syllables (verbal information). Rehearsal of verbal, as well as of tonal information activated a network comprising ventrolateral premotor cortex (encroaching Broca's area), dorsal premotor cortex, the planum temporale, inferior parietal lobe, the anterior insula, subcortical structures (basal ganglia and thalamus), as well as the cerebellum. The topography of activations was virtually identical for the rehearsal of syllables and pitches, showing a remarkable overlap of the WM components for the rehearsal of verbal and tonal information. When the WM task was performed under articulatory suppression, activations in those areas decreased, while additional activations arose in anterior prefrontal areas. These prefrontal areas might contain additional storage components of verbal and tonal WM that are activated when auditory information cannot be rehearsed. As in the rehearsal conditions, the topography of activations under articulatory suppression was nearly identical for the verbal as compared to the tonal task. Results indicate that both the rehearsal of verbal and tonal information, as well as storage of verbal and tonal information relies on strongly overlapping neuronal networks. These networks appear to partly consist of sensorimotor-related circuits which provide resources for the representation and maintenance of information, and which are remarkably similar for the production of speech and song.
منابع مشابه
Neuroarchitecture of verbal and tonal working memory in nonmusicians and musicians.
Working memory (WM) for auditory information has been thought of as a unitary system, but whether WM for verbal and tonal information relies on the same or different functional neuroarchitectures has remained unknown. This fMRI study examines verbal and tonal WM in both nonmusicians (who are trained in speech, but not in music) and highly trained musicians (who are trained in both domains). The...
متن کاملAuditory stroop and absolute pitch: an fMRI study.
To date, the underlying cognitive and neural mechanisms of absolute pitch (AP) have remained elusive. In the present fMRI study, we investigated verbal and tonal perception and working memory in musicians with and without absolute pitch. Stimuli were sine wave tones and syllables (names of the scale tones) presented simultaneously. Participants listened to sequences of five stimuli, and then re...
متن کاملThe functional neuroanatomy of human working memory revisited. Evidence from 3-T fMRI studies using classical domain-specific interference tasks.
In the present event-related functional magnetic resonance imaging study, the neural implementation of human working memory was reinvestigated using a factorial design with verbal and visuospatial item-recognition tasks each performed under single-task conditions, under articulatory suppression, and under visuospatial suppression. This approach allowed to differentiate between brain systems sub...
متن کاملElectrophysiological correlates of verbal and tonal working memory.
The present study's basic research question concerns differences in the processing of verbal and tonal stimuli in working memory. Participants had to rehearse sequences containing tonal and verbal information and to decide whether a subsequently presented probe stimulus belonged to the previously presented sequence. Electrophysiological measures were taken and analysed with regard to local (eve...
متن کاملNeural correlates of strategy use during auditory working memory in musicians and non-musicians.
Working memory (WM) performance in humans can be improved by structuring and organizing the material to be remembered. For visual and verbal information, this process of structuring has been associated with the involvement of a prefrontal-parietal network, but for non-verbal auditory material, the brain areas that facilitate WM for structured information have remained elusive. Using functional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human brain mapping
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2009